Resources available from kickstart tutors	Student number
Name —————	
Date	
Attempt/Time taken	

GCSE PHYSICS

Topic Paper: 1.1 & 5.6 Energy changes, power, work done, forces and motion Part 1

Time allowed: 45 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The Periodic Table/Data Sheet is provided as in insert.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions you need to make sure that your answer:
 - is clear, logical, sensibly structured
 - fully meets the requirements of the question
 - shows that each separate point or step supports the overall answer.

40 Marks

	the	braking distance.	
	(i)	What is meant by thinking distance?	
			(1)
	(ii)	State two factors that affect thinking distance.	
		1	
		2	
			(2)
(b)		ar is travelling at a speed of 20 m/s when the driver applies the brakes. The car elerates at a constant rate and stops.	
	(i)	The mass of the car and driver is 1600 kg.	
		Calculate the kinetic energy of the car and driver before the brakes are applied.	
		Use the correct equation from the Physics Equations Sheet.	
		Kinetic energy =	(2)
	(ii)	How much work is done by the braking force to stop the car and driver?	
		Work done = J	445
			(1)

(c)

More resources available at kickstart-tutors.uk/resources

(iii)	The braking force used to stop the car and driver was 8000 N.	
	Calculate the braking distance of the car.	
	Use the correct equation from the Physics Equations Sheet.	
	Braking distance = m	(2)
(iv)	The braking distance of a car depends on the speed of the car and the braking force applied.	
	State one other factor that affects braking distance.	
		(1)
(v)	Applying the brakes of the car causes the temperature of the brakes to increase.	
	Explain why.	
		(0)
		(2)
a reg	rid cars have an electric engine and a petrol engine. This type of car is often fitted with generative braking system. A regenerative braking system not only slows a car down at the same time causes a generator to charge the car's battery.	
State	e and explain the benefit of a hybrid car being fitted with a regenerative braking system.	
	(Total 14 ma	(3) rks)

More resources available at kickstart-tutors.uk/resources

Q2. (a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart.

Final design Y

The go-kart always had the same mass and used the same motor.

The change in shape from the first design (\mathbf{X}) to the final design (\mathbf{Y}) will affect the top speed of the go-kart.

Explain why.		
	 •	

(3)

(ii)

More resources available at kickstart-tutors.uk/resources

(b) The final design go-kart, Y, is entered into a race.

The graph shows how the velocity of the go-kart changes during the first 40 seconds of the race.

(i)	Use the graph to calculate the acceleration of the go-kart between points ${\bf J}$ and ${\bf K}$
	Give your answer to two significant figures.

Use the graph to calculate the distance the go-kart travels between points **J** and **K**.

Distance = m
(2)

Acceleration = m/s²

(iii) What causes most of the resistive forces acting on the go-kart?

(1) (Total 8 marks)

(2)

Q3. The graph shows the speed of a runner during an indoor 60 metres race.

(a)	Calculate the acceleration of the runner during the first four seconds. (Show your working.)	
		(3)
(b)	How far does the runner travel during the first four seconds? (Show your working.)	
		(3)
(c)	At the finish, a thick wall of rubber foam slows the runner down at a rate of 25 m/s². The runner has a mass of 75kg. Calculate the average force of the rubber foam on the runner. (Show your working.)	

Answer newtons (N)

(2) (Total 8 marks)

Q4.	When a gun is fired,	a verv la	arge force	acts on the	e bullet for a v	very short time
QΤ.	Willia quii is ilicu,		arge rorce	acio on inc	bullet lot a	very short time.

The change in momentum of the bullet is given by the following relationship:

force (N) \times time(s) = change in momentum (kg m/s)

(a)	An a	An average force of 4000 newton acts for 0.01 seconds on a bullet of mass 50g.						
	Cald	Calculate the speed of the bullet. (Show your working.)						
		Answer m/s	(4)					
(b)		bullet is fired horizontally. In the short time it takes for the bullet to reach its target, its zontal speed has fallen to 80% of its initial speed.						
	(i)	Explain why the speed of the bullet decreases so quickly.						
			(2)					
	(ii)	Calculate the percentage of its original kinetic energy the bullet still has when it reaches its target.						
		(Show your working.)						
		(Total 10 m	(4) arks)					