GCSE CHEMISTRY

Topic Paper: 3 Quantitative chemistry Part 1 \& 2 Mark Scheme

MARK SCHEME

M1. (a) (i) (phosphoric) acid
allow phosphoric
(ii) $\mathrm{H}^{+} /$hydrogen (ion)
if ion symbol given, charge must be correct
(b) (i) pencil
so it will not run / smudge / dissolve
ignore pencil will not interfere with / affect the results
or
because ink would run / smudge / dissolve ignore ink will interfere with / affect the results
(ii) any three from:
reference to spots / dots = max 2
allow colouring for colour
3 colours in Cola
allow more colours in cola or fewer colours in fruit drink 2 colours in Fruit drink
one of the colours is the same
two of the colours in Cola are different one of the colours in Fruit drink is different allow some of the colours in the drinks are different one of the colours in Cola is the most soluble accept one of the colours in Cola has the highest R_{f} value
(c) different substances travel at different speeds or have different retention times accept different attraction to solid ignore properties of compounds
(d) (i) Is there caffeine in a certain brand of drink?
(ii) any two from:
cannot be done by experiment based on opinion / lifestyle choice ethical, social or economic issue accept caffeine has different effects on different people

M2. (a) (i) 40
correct answer with or without working or incorrect working if the answer is incorrect then evidence of $24+16$ gains 1 mark ignore units
(ii) 60
correct answer with or without working or incorrect working if the answer is incorrect then evidence of 24/40 or 24/(i) gains 1 mark ecf allowed from part(i)
ie 24/(i) $\times 00$
ignore units
(iii) 15
ecf allowed from parts(i) and (ii)
$24 /(i) \times 25$ or (ii)/100 $\times 25$
ignore units
(b) (i) any two from:
ignore gas is lost
error in weighing magnesium / magnesium oxide
allow some magnesium oxide left in crucible
loss of magnesium oxide / magnesium
allow they lifted the lid too much
allow loss of reactants / products
not all of the magnesium has reacted
allow not heated enough
allow not enough oxygen / air
(ii) any two from:
ignore fair test
check that the result is not anomalous
to calculate a mean / average
allow improve the accuracy of the mean / average
improve the reliability
allow make it reliable
reduce the effect of errors

M3. (a)
2
H
1
2 and 1 must be on the left
2 must be above half-way on the H and the 1 below half-way accept diagram with 2 different particles in centre and 1 particle on circle
(b) (i) 18
ignore working ignore units
(ii) forces (of attraction) between molecules or bonding between molecules or intermolecular forces /intermolecular bonds
are weak or not much energy needed to break them or easily overcome must be linked to first mark if no other mark awarded allow small molecules / small M_{r} for 1 mark
allow forces / bonds are weak for 1 mark do not allow covalent bonding is weak
(c) any reference to more protons $=\mathbf{0}$ marks
$\mathrm{H}-2$ atoms have 1 proton and 1 neutron
allow H -2 has more neutrons / particles for 1 mark
$\mathrm{H}-1$ atoms have one proton
allow H-2 has two particles and $\mathrm{H}-1$ has one particle for 1 mark

or

$\mathrm{H}-2$ atom has one neutron (1)
allow H -2 atom has one more neutron for 2 marks
$\mathrm{H}-1$ atom has no neutrons (1)
NB heavy water (molecule) has 2 more neutrons $=\mathbf{2}$ marks heavy water (molecule) has more neutrons / particles $=1$ mark if no other mark awarded then heavy water molecule has \boldsymbol{M}_{r} of $20=$ 1 mark
ignore reference to electrons

M4. (a) 152 correct answer with or without working $=\mathbf{2}$ marks
$56+32+(4 \times 16)$ gains 1 mark
ignore any units
(b) 152 g (rams)
ecf from the answer to (a) and g
must have unit $\mathrm{g} / \mathrm{gram} / \mathrm{gramme}$ / grams etc
accept $\mathrm{g} / \mathrm{mol}$ or g per mole or g mole $^{-1}$ or $\mathrm{g} / \mathrm{mol}$ or g per mol or g
mol^{-1}
do not accept $g \mathrm{~m}$
do not accept G
(c) $76(\mathrm{~g})$
ecf from their answer to (a) or (b) divided by 2
ignore units
(ii) mass spectrometer
(b) (i) 165
if answer is not correct then evidence of correct working gains one mark.
e.g. $(10 \times 12)+15+14+16$

1
(c) any two from:
faster
more accurate
detects smaller amounts
(d) to avoid bias
accept to check / compare the result
to improve reliability

M6. (a) 100

> ignore units
$40+12+(3 \times 16)$ for 1 mark
(b) 40
(ecf from part (a) can get 2 marks)
$\frac{40}{\text { their (a) }} \times 100$ for 1 mark
(c) 0.5
(ecf from part (b) can get 2 marks)
$1.25 \times\left(\frac{\text { their (b) }}{100}\right)$ or other correct working for 1 mark
(d) gas produced or carbon dioxide $/ \mathrm{CO}_{2}$ produced

M7. (a) same number/six electrons; same number/six protons; react in same way not same element or both carbon any two for 1 mark each
(b) different number of neutrons
gains 1 mark
but
or
${ }_{6}^{14} \mathrm{C}$ has two more neutrons
different mass number
or
but two mass units bigger
gains 2 marks
${ }_{6}^{14} \mathrm{C}$ has 8 neutrons while
gains 2 marks
${ }_{6}^{12} \mathrm{C}$ has 6 neutrons

M8.
(a) $\mathrm{Fe}_{2}[56 \times 2]$ or 112
$\mathrm{O}_{3}[16 \times 3]$ or 48
each gain 1 mark
but $M_{r}=160$
gains 3 marks
(b) $\left[\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{~A} 1 \rightarrow 2 \mathrm{Fe}+\mathrm{A1}_{2} \mathrm{O}_{3}\right]$
$160 \rightarrow 112$ (NB Credit if unworked
(or value (or value but should be totalled)
from (a)) from (a))
gains 1 mark
but
32 g . of $\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 32 / 160 \times 112$
gains 2 marks
but $=22.4$
gains 3 marks

M9. 70/56 30/16
division by atomic mass

```
=1.25 = 1.875
proportion
```

23
ratio (accept 1:1.5 / 4:6 / etc)
allow e.c.f from proportion if sensible attempt at step 1
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
formula allow e.c.f from ratio if sensible attempt at step 1 allow correct formula with no working = 1 mark

M10. (a)

$$
\begin{array}{cc}
\frac{6.21}{207} & \frac{0.64}{16} \\
& \begin{array}{l}
\mathbf{1} \text { mark for dividing mass by } A_{r} \\
\text { max } \mathbf{2} \text { if } A_{r} \text { divided by mass } \\
=0.03
\end{array} \\
& \mathbf{1} \text { mark for correct proportions }
\end{array}
$$

3

4

1 mark for correct whole number ratio (allow multiples) can be awarded from correct formula

$$
\begin{aligned}
& \mathrm{Pb}_{3} \mathrm{O}_{4} \\
& 1 \text { mark for correct formula } \\
& \text { ecf allowed from step } 2 \text { to step } 3 \text { and step } 3 \text { to step } 4 \text { if sensible } \\
& \text { attempt at step } 1 \\
& \text { correct formula with no working gains } 2 \text { marks }
\end{aligned}
$$

(b) (i)

allow all dots or all crosses or e or e^{-} ignore inner shells and any inner electrons allow 4 non-bonded electrons anywhere on shell as long as not in overlap - need not be paired
(ii) forces of attraction / bonds between molecules are weak (owtte) do not accept intramolecular forces / covalent bonds are weak do not accept reference to ions
or
intermolecular forces / bonds are weak (owtte)
or
it is made of small molecules with weak forces of attraction if $\mathbf{2}$ marks not awarded made of small molecules / simple molecular gains 1 mark forces of attraction are weak (without specifying between molecules / intermolecular) gains 1 mark
(accept easily broken / not much energy needed to break instead of weak)
bonds are weak without specifying intermolecular would not gain a mark and would be ignored
(iii) 4
accept 130 to 130.43478
correct answer gains two marks with or without working
an answer of 131 would gain one mark.
if answer is not correct then:
moles of salicylic acid $=0.7$. \qquad (1 mark)
or
mass of aspirin $=$ moles of salicylic acid $\times 180$ (1 mark)
or
$100 \times(180 / 138)$ (1 mark)
(b) (i) 62.5%
accept 63\%
correct answer gains two marks with or without working if answer is not correct then:
250/400 x 100 (1 mark)
(ii) any one from:

[^0]
More resources available at kickstart-tutors.uk/resources

(c) use lower temperatures or less energy needed allow product made faster or more product made in a given time

[^0]: reversible reaction
 accept not all of the reactant converted to product
 some of product lost

