| Resources available from kickstart tutors | Student number |  |  |  |
|-------------------------------------------|----------------|--|--|--|
| Name ———————————————————————————————————— |                |  |  |  |
| Date                                      |                |  |  |  |
| Attempt/Time taken                        |                |  |  |  |

# GCSE CHEMISTRY

Topic Paper: 4.2 Reactions of acids

Part 1

Time allowed: 40 minutes

#### **Materials**

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a calculator, which you are expected to use where appropriate.

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The Periodic Table/Data Sheet is provided as in insert.
- You are reminded of the need for good English and clear presentation in your answers.
- When answering questions you need to make sure that your answer:
  - is clear, logical, sensibly structured
  - fully meets the requirements of the question
  - shows that each separate point or step supports the overall answer.



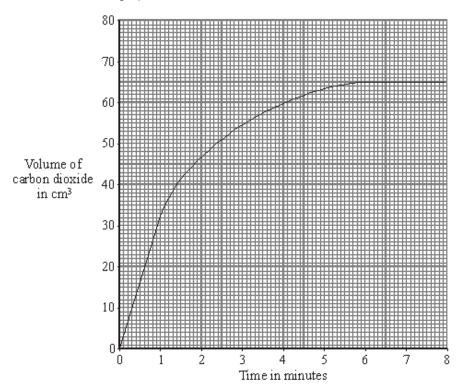
35 Marks

(a)

Q1. The picture shows a lump of phosphate rock.



Rob Lavinsky, iRocks.com – CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons


Phosphoric acid is made by adding sulfuric acid to phosphate rock.

| (a) | The rate of reaction between sulfuric acid and phosphate rock can be increased if the mixture is heated to a higher temperature. |             |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Explain, in terms of particles, why an increase in temperature increases the rate of reaction.                                   |             |
|     |                                                                                                                                  |             |
|     |                                                                                                                                  |             |
|     |                                                                                                                                  |             |
|     |                                                                                                                                  |             |
|     |                                                                                                                                  |             |
|     |                                                                                                                                  | (2)         |
| (b) | State <b>one</b> other way in which the rate of reaction between sulfuric acid and phosphate rock can be increased.              |             |
|     |                                                                                                                                  |             |
|     | (Total 3 m                                                                                                                       | (1)<br>arks |

**Q2.** A student studied the reaction between dilute hydrochloric acid and an **excess** of calcium carbonate.

calcium carbonate + hydrochloric acid → calcium chloride + water + carbon dioxide

The student measured the volume of carbon dioxide produced in the experiment. The results are shown on the graph.



| (a) | After how many minutes had all the acid been used up? |  |
|-----|-------------------------------------------------------|--|
|     |                                                       |  |

..... minutes

(b) The student wrote this conclusion for the experiment:

'The reaction gets slower and slower as the time increases.'

Explain why the reaction gets slower. Your answer should be in terms of particles.

(2)

(1)

(c) A second experiment was carried out at a higher temperature. All other factors were the same.

**Draw** a line on the graph above to show the results that you would expect.

(2) (Total 5 marks)

**Q3.** Hydrogen peroxide, H<sub>2</sub>O<sub>2</sub>, is often used as a bleach. It decomposes forming water and oxygen.

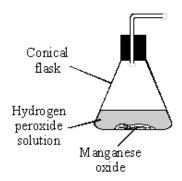
| (a) (i | i) | Write the balanced ch | emical equation | for the decomposition | of hydrogen peroxide |
|--------|----|-----------------------|-----------------|-----------------------|----------------------|
|--------|----|-----------------------|-----------------|-----------------------|----------------------|

(3)

(ii) Give a test for oxygen.

Test

Result of test


(2)

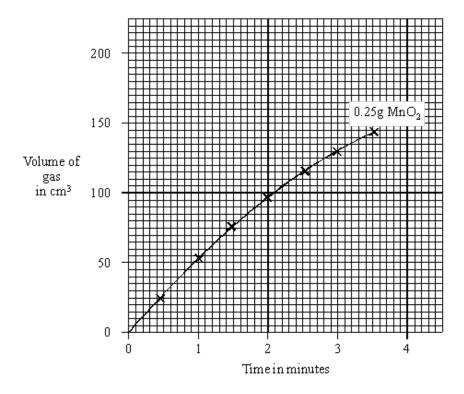
(b) The rate of decomposition of hydrogen peroxide at room temperature is very slow. Manganese oxide is a catalyst which can be used to speed up the decomposition. Complete the sentence.

A catalyst is a substance which speeds up a chemical reaction. At the end of the reaction, the catalyst is .....

(1)

- (c) Two experiments were carried out to test if the amount of manganese oxide, MnO<sub>2</sub> affected the rate at which the hydrogen peroxide decomposed.
  - (i) Complete the diagram to show how you could measure the volume of oxygen formed during the decomposition.




(2)



(ii) The results are shown in the table.

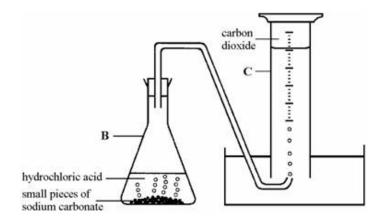
| Time in minutes                                    | 0 | 0.5 | 1  | 1.5 | 2   | 2.5 | 3   | 3.5 |
|----------------------------------------------------|---|-----|----|-----|-----|-----|-----|-----|
| Volume of gas in cm³ using 0.25 g MnO <sub>2</sub> | 0 | 29  | 55 | 77  | 98  | 116 | 132 | 144 |
| Volume of gas in cm³ using 2.5 g MnO <sub>2</sub>  | 0 | 45  | 84 | 118 | 145 | 162 | 174 | 182 |

Draw a graph of these results. The graph for 0.25 g  $\mathrm{MnO_2}$  has been drawn for you.



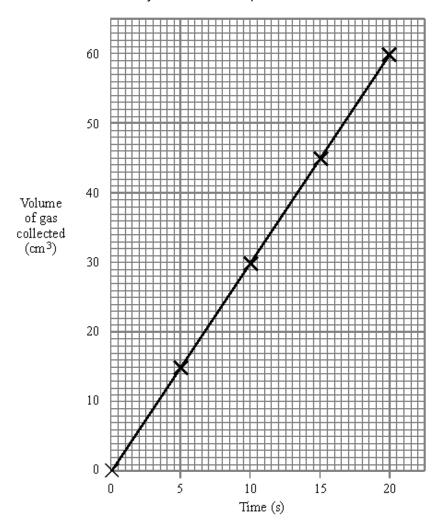
(iii) Explain why the slopes of the graphs become less steep during the reaction.

(3)


(2)



|     |     | (iv)      | The same volume and concentration of hydrogen peroxide solution was used for both experiments. What <b>two</b> other factors must be kept the same to make it a fair test? |             |
|-----|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     |     |           | 1                                                                                                                                                                          |             |
|     |     |           | 2                                                                                                                                                                          |             |
|     |     |           | (Total 15 mar                                                                                                                                                              | (2)<br>'ks) |
| Q4. | is: | Dilute    | hydrochloric acid reacts with sodium carbonate. The word equation for this reaction                                                                                        |             |
|     | 13. | soc       | lium carbonate + hydrochloric acid → sodium chloride + water + carbon dioxide                                                                                              |             |
|     | (a) | The       | diagram shows apparatus used by student X to investigate this reaction.                                                                                                    |             |
|     |     |           | hydrochloric acid carbon dioxide large lumps of sodium carbonate                                                                                                           |             |
|     |     | (i)       | Name the piece of apparatus labelled <b>A</b> .                                                                                                                            |             |
|     |     | <i></i> . |                                                                                                                                                                            | (1)         |
|     |     | (ii)      | NaCO <sub>3</sub> NaCl Na <sub>2</sub> CO <sub>3</sub> Na <sub>2</sub> Cl                                                                                                  |             |
|     |     |           | Use the Data Sheet to help you choose the correct formula from the list for:                                                                                               |             |
|     |     |           | sodium carbonate,                                                                                                                                                          |             |
|     |     |           | sodium chloride                                                                                                                                                            | (2)         |




(b) The diagram below shows a different apparatus used by student Y to investigate the same reaction.



| (i)  | Name the pieces of apparatus labelled <b>B</b> and <b>C</b> .                                        |     |
|------|------------------------------------------------------------------------------------------------------|-----|
|      | В                                                                                                    |     |
|      | c                                                                                                    | (2) |
| (ii) | Both students X and Y used the same                                                                  |     |
|      | volume of acid                                                                                       |     |
|      | concentration of acid                                                                                |     |
|      | temperature                                                                                          |     |
|      | mass of sodium carbonate                                                                             |     |
|      | Use information from the diagrams to explain why the reaction that student Y carried out was faster. |     |
|      |                                                                                                      |     |
|      |                                                                                                      |     |
|      |                                                                                                      | (2) |

(c) The results obtained by student Y were plotted as shown below.



(i) Student Y repeated the experiment exactly as before but used warmer acid. This made the reaction faster. On the graph draw a line for this faster reaction.

(2)

Explain, in terms of particles, why the rate of the reaction is faster when warmer acid (ii) is used.

(Total 12 marks)