

GCSE PHYSICS

Topic Paper: 1.1 & 5.6 Energy changes, power, work done, forces and motion Part 1, 2 & 3 Mark Scheme

MARK SCHEME

117 Marks

More resources available at www.kickstart-tutors.uk/resources

- M1. (a) (i) distance vehicle travels during driver's reaction time accept distance vehicle travels while driver reacts
 - (ii) any **two** from:

tiredness	
(drinking) alcohol	
(taking) drugs	
speed	
age accept as an alternative factor distractions, eg using a mobile phone	

1

2

2

1

2

1

(b) (i) 320 000

allow **1** mark for correct substitution, ie $\frac{1}{2} \times 1600 \times 20^{-2}$ provided no subsequent step shown

- (ii) 320000 **or** their (b)(i)
- (iii) 40

or

their (b)(ii) 8000 allow 1 mark for statement work done = KE lost or allow 1 mark for correct substitution, ie 8000 ×distance = 320 000 or their (b)(ii)

(iv) any **one** from:

icy / wet roads accept weather conditions

(worn) tyres

road surface

mass (of car and passengers) accept number of passengers

(efficiency / condition of the) brakes

		(v)	(worł (betv	k done by) friction veen brakes and wheel) do not accept friction between road and tyres / wheels	1	
			(cau	ses) decrease in KE and increase in thermal energy accept heat for thermal energy accept KE transferred to thermal energy		
					1	
	(c)	the	battery	r needs recharging less often accept car for battery	1	
		or				
		incr	reases	the range of the car accept less demand for other fuels or lower emissions or lower fuel costs environmentally friendly is insufficient		
		as t	he effic	ciency of the car is increased		
				accept it is energy efficient	1	
		the	decrea	ase in (kinetic) energy / work done charges the battery (up) accept because not all work done / (kinetic) energy is wasted	1	
M2.		(a) I	more st	treamlined accept decrease surface area		[14]
					1	
	air resista		resistar	nce is smaller (for same speed) accept drag for air resistance friction is insufficient		
					1	
		so r	reaches	s a higher speed (before resultant force is 0) <i>ignore reference to mass</i>	1	
	(b)	(i)	1.7	allow 1 mark for correct method, ie $\frac{5}{3}$		
				<i>or</i> allow 1 mark for an answer with more than 2 sig figs that rounds		
				or allow 1 mark for an answer of 17	2	
		(ii)	7.5			
				allow 1 mark for correct use of graph, eg $\frac{1}{2}$ ×5 ×3	2	
					2	

(iii) air (resistance) accept wind (resistance) drag is insufficient friction is insufficient

[8]

1

3

3

M3. (a) acceleration = $\frac{\text{change in speed/velocity}}{\text{time taken}}$

or $\frac{10}{4}$ gains 1 mark do not penalise if <u>both</u> of these present but 'change in' omitted from formula

but 2.5

gains 2 marks

unit m/s² or metres per second squared

or metres per second per second

or ms⁻* *for 1 mark*

(b) *evidence* of using area under graph or distance <u>average</u> speed ×time **or**

$$10 \times 4 \times \frac{1}{2}$$
 gains 1 mark

but 20

,

gains 2 marks

units metres / m^{-2*} for 1 mark

(c) force = mass ×acceleration **or** 75 ×25

gains 1 mark

but 1875

gains 2 marks

*NB Correct unit to be credited even if numerical answer wrong or absent.

[8]

2

4

2

4

5

M4. (a) any evidence of: momentum = mass ×velocity (words, symbols or numbers) appropriate re-arrangement mass as 0.05kg each gains 1 mark

but 800

gains 4 marks

(b) (i) *any reference to* friction with air/air resistance *gains 1 mark*

but *idea that* friction with air/air resistance is high (at high speed) gains 2 marks

 (ii) any evidence of: k.e. ∝ v² or k.e. = ½ mv² <u>final k.e.</u> initial k.e. either initial or final k.e. correctly calculated (i.e. 16000; 10240) each gains 1 mark

but (0.8)² gains 3 marks

but 64%(credit 0.64) gains 4 marks (also credit e.c.f)

[10]

M5. (a) Each scale optimum Else both half size Straight line joining 30,0 to 30,0.67 to 0, 5.67 *any 5 for 1 mark each*

(b)	6 Else	e a = 30/5 gets 2 marks	
	Else	e a = v/t gets 1 mark	3
(c)	9000 Else	0 e F = 6 ×1500 <i>gets 2 marks</i>	
	Else	e F = ma gets 1 mark	3
(d)	(i)	Driver has forward momentum Which is conserved Giving drive relative forward speed to car <i>for one mark each</i>	3
	(ii)	If inelastic ke lost Here ke does work crumpling car <i>for 1 mark each</i>	2
	(iii)	Car stops in 75m gets 1 mark	
		W = F.d or 9000 ×75 gets 1 mark	
		W = 675 000 J OR ke = 1/2 mv ² gets 1 mark	
		ke = 1/2.1500.302 ke = 675 000 J	3

[19]

4

M6. (a) there is a (maximum) forward force drag/friction/resistance (opposes motion) (not pressure) increases with speed till forward and backward forces equal so no net force/acceleration any 4 for 1 mark each

(b) (i) F = ma10 000 = 1250a a = 8 m/s^{2}

for 1 mark each

- (ii) ke = $1/2 \text{ mv}^2$ ke = $1/2 \ 1250.48^2$ ke = $1 \ 440 \ 000$ J for 1 mark each
- (iii) W = Fd W = 10 000.144 W = 1 440 000 J for 1 mark each

[16]

1

1

4

4

4

M7. (a) (i) longer reaction time accept slower reactions do **not** accept slower reaction time unless qualified

or

greater thinking distance accept greater thinking time

or

greater stopping distance accept greater stopping time greater braking distance negates answer

- (ii) lines / slopes have the same gradient accept slopes are the same
 - or

velocity decreases to zero in same time / in 2.6 seconds accept any time between 2.4 and 2.8 accept braking distances are the same

(iii) 12

accept extracting both reaction times correctly for **1** mark (0.6 and 1.4) or time = 0.8 (s) for **1** mark accept 0.8 ×15 for **2** marks accept calculating the distance travelled by car **A** as 28.5 m or the distance travelled by car **B** as 40.5 m for **2** marks

(b) **Z**

different force values give a unique / different resistance
only scores if Z chosen
do not accept force and resistance are (directly) proportional
accept answers in terms of why either X or Y would not be best eg
X – same resistance value is obtained for 2 different force values
Y – all force values give the same resistance

[7]

3

1

1

2

3

1

1

M8. (a) 13 500 (J)

allow **1** mark for correct substitution, ie $90 \times 10 \times 15$ provided no subsequent step shown

- (b) 17
 - or $\sqrt{\frac{\text{their (a)}}{45}}$

correctly calculated and answer given to 2 or 3 significant figures

accept 17.3 allow 2 marks for an answer with 4 or more significant figures, ie 17.32 or allow 2 marks for correct substitution, ie 13 500/ their (a) = $\frac{1}{2} \times 90$ $\times v^2$ or allow 1 mark for a statement or figures showing KE = GPE

(c) work is done

(against) friction (between the miner and slide) accept 'air resistance' or 'drag' for friction

		(dı	ue to the) slide not (being perfectly) smooth accept miners clothing is rough		
		or				
		ca	using (ki	netic) energy to be transferred as heat/internal energy of surroundings accept lost/transformed for transferred accept air for internal energy of surroundings	1	[8]
M9.		(a)	35 (m)	allow 1 mark for indicating the correct area allow 1 mark for obtaining correct figures from the graph allow 1 mark for calculating area of triangle (25) but omitting the rectangle underneath (2 x 5)	3	
	(b)	86	400	allow 1 mark for correct substitution into the correct equation ie 1/2 ×1200 ×12 ²	2	[5]
M10.		(a)	48	allow for 1 mark correct method shown, ie 6 ×8 or correct area indicated on the graph	2	
	(b)	dia	ıgonal lir	ne from (0,0) to (6,48) / (6, their (a)) if answer to (a) is greater than 50, scale must be changed to gain this mark	1	
		ho	rizontal l	ine at 48m between 6 and 10 seconds accept horizontal line drawn at their (a) between 6 and 10 seconds	1	[4]

KSD

M11.	(a)	1.25						
			allow 1 mark for correct resultant force ie 1500N allow 2 marks for correct transformation and substitution ie $\frac{1500}{1200}$					
			allow 1 mark for a correct transformation but clearly substituting an incorrect value for force $eg = \frac{3500}{1200}$					
			7200	3				
	m/s	2		1				
(b)) as s	speed i	ncreases so does the size of the drag force accept frictional force / resistive force / air resistance for drag	1				
	eve	ntually	the drag force becomes equal to the thrust	1				
	the ther	resulta re is no	Int force is now equal to zero and therefore further acceleration	1				
(c)) the forc	the car and van will reach top speed when the forward force equals the drag force						
			accept air resistance / frictional / resistive force for drag force	1				
	the for t	1						
	as the car therefore at a highe		is more streamlined	1				
			he car's drag force will equal the forward force r speed	1				
			allow converse throughout		[11]			
M12.	(a)	(i) or grea	longer reaction time accept slower reactions do not accept slower reaction time unless qualified ter thinking distance					

accept greater thinking time

or

greater stopping distance

accept greater stopping time greater braking distance negates answer

1

(ii)	lines / slopes have the same gradient accept slopes are the same					
	velocity decreases to zero in same time / in 2.6 seconds accept any time between 2.3 and 2.8 accept braking distances are the same	1				
(iii)	12 accept extracting both reaction times correctly for 1 mark (0.6 and 1.4) or time = 0.8(s) for 1 mark accept 0.8 ×15 for 2 marks accept calculating the distance travelled by car A as 28.5 m or the distance travelled by car B as 40.5 m for 2 marks	3				
z		1				
diffe	rent force values give a unique / different resistance only scores if Z chosen do not accept force andresistance are (directly) proportional accept answers in terms of why either X or Y would not be the best eg X – same resistance value is obtained for 2 different force values Y – all force values give the same resistance	1				

(b)

[7]