

GCSE PHYSICS

Topic Paper: 3.1 & 3.2 Change of state, internal energy and energy transfers Part 1 & 2 Mark Scheme

MARK SCHEME

76 Marks

More resources available at www.kickstart-tutors.uk/resources

M1.	(;	(a) loft insulation	
		energy saved in 10 years £600	
		net saving (600 – 110) £490 1	
		OR	
		hot water jacket	
		energy saved in 10 years £140	
		This is the highest percentage saving on cost	
	(b)	transferred to environment / surroundings	
		as heat / thermal energy 1	

M2. (a) conduction

(b) 35 000

(c) 500
their (b) = 2 x c x 35 correctly calculated scores 2 marks allow 1 mark for correct substitution, ie 35000 = 2 x c x 35
or their (b) = 2 x c x 35

J / kg℃

 (d) energy lost to surroundings or energy needed to warm heater accept there is no insulation (on the copper block) do not accept answers in terms of human error or poor results or defective equipment

[6]

1

[5]

1

1

2

М3.		(a)	air near freezer compartment is cooled or loses energy accept air at the top is cold	1
		СС	ool air is (more) dense or particles close(r) together (than warmer air) do not allow the particles get smaller / condense	1
		so	o (cooler) air falls	1
		ai	ir (at bottom) is displaced / moves upwards / rises do not allow heat rises accept warm air (at the bottom) rises	1
	(b)	if O	volume is doubled, energy use is not doubled r	
		VC	olume ÷energy not a constant ratio	1
		co	orrect reference to data, eg 500 is 2⁄250 but 630 not 2⁄800	1
	(c)	ad	ccept suitable examples, eg	
		a	dvantage:	
			reduces emissions into atmosphere lower input power or uses less energy or wastes less energy costs less to run <i>cost of buying or installing new fridge is insufficient</i>	
			ignore reference to size of fridge	1
		di	isadvantage:	
			land fill energy waste in production cost or difficulty of disposal transport costs	
				1 [8]
М4.		(a)	there are strong forces (of attraction) between the particles in a solid accept molecules / atoms for particles throughout accept bonds for forces	1
		(h	nolding) the particles close together	
			particles in a solid are less spread out is insufficient	1

	or							
	(hol	(holding) the particles in a fixed pattern / positions						
	but	in a gas the forces between the particles are negligible						
		accept very small / zero for negligible accept bonds for forces		1				
	so t	he particles spread out (to fill their container)						
	30 (accept particles are not close together						
		gas particles are not in a fixed position is insufficient		1				
(b)	(i)	particles are (shown) leaving (the liquid / container)						
• •	()	accept molecules / atoms for particles throughout						
		accept particles are escaping						
		particles are getting further apart is insufficient		1				
	(ii)	accept molecules / atoms for particles throughout						
	()	accept speed / velocity for energy throughout						
		particles with most energy leave the (surface of the) liquid						
		accept fastest particles leave the liquid		1				
				1				
		so the <u>mean / average</u> energy of the remaining particles goes down		1				
		and the lower the average energy (of the particles) the lower the temperature						
		(of the liquid)		1				
					[8]			
	(a)	(i) the outlet mark						
		hot water rises or floats up						
		do not accept heat rises						
		the inlet mark						
			1					
		cold water replacing any drawn off comes in at the bottom and does not mix with hot or cool the hot water						
		do not accept descriptions of a convection current	1					
	(11)	only heats top (of tank) or a small volume						
			1					
		no mixing occurs with cold because hot water is less dense or water is a poc	r					
		no mixing because cold water is more dense						

M5.

(b)	radi Iowe	ation (losses from tank) do not accept reflection of heat 1 er from light or white or shiny surfaces <i>credit they are poor radiators for both marks</i> 1	[6]
	(a) air i air c air b air r air f repl	convection s heated by the burner / particles gain energy expands / particles move about more / particles move faster becomes less dense / particles are more spread out ises / particles rise - <i>not</i> heat rises rom C moves into the heater / particles from C move into the heater to ace it / them <i>any</i> four <i>for 1 mark each</i>	
(b)	(i) (ii)	radiation for one mark 1 black surface <u>radiates / emits</u> well (allow absorbs and emits well) (allow comparison with shiny / white surfaces) large surface area needed high temperature (of the lumps) any one for 1 mark 1	[6]
	(a) (ii)	 (i) refraction accept refracted reflection, diffraction and dispersion are incorrect 1 to check rise in temperature (of other thermometers) was due to the (different wavelengths of) light accept as a control / comparison to measure room temperature is insufficient 	
	(b) (b)	 (b) radi lowe (a) air i air e air f repl (b) (i) (ii) (a) 	 (b) radiation (losses from tank) do not accept reflection of heat lower from light or while or shiny surfaces credit they are poor radiators for both marks (a) convection air is heated by the burner / particles gain energy air expands / particles move about more / particles move faster air breaks particles are more spread out air rises / particles are nore spread out air rises / particles are nore spread out air rises / particles rise - not heat rises air from C moves into the heater / particles from C move into the heater to replace it / them any four for 1 mark each (b) (i) radiation for one mark (ii) black surface radiates / emits well (allow absorbs and emits well) (allow comparison with shiny / white surfaces) large surface area needed high temperature (of the lumps) any one for 1 mark (a) (i) refraction accept refracted reflection, diffraction and dispersion are incorrect (ii) to check rise in temperature (of other thermometers) was due to the (different wavelengths of) light accept as a control / comparison to measure room temperature is insufficient

	(iii) any two f	from three:	
	differe temper	ent colours produce different heating effects / (rises in) ratures	
	red liq temper	ght produces the greatest heating effect / (rise in) rature	
	or		
	violet	produces the least heating effect / (rise in) temperature	
	all co an the	lours produce a greater heating effect than outside the spectrum answer a longer the <u>wavelength</u> the greater the (rise in) temperature	
	or the bo	e lower the <u>frequency</u> the greater the (rise in) temperature gains th marks	2
(b)	move a thermo allo	ometer into the infrared region / just beyond the red light ow use an infrared camera / infrared sensor	1
	the temperatur acc	re increases beyond 24(℃) cept temperature higher than for the red light	1
(c)	$v = f \times \lambda$		
	9.4 ×10 -6		
	ac	cept 9.375 ×10 ⁻⁶ or 9.38 ×10 ⁻⁶	
	or		
	0.0000094 acc or allo ie s	cept 0.000009375 0.00000938 ow 1 mark for correct substitution 3 ×10 8 = 3.2 ×10 13 × λ	2
(d)	at night the su acc the	rroundings are cooler cept at night the air is colder ere is no heat from the Sun is insufficient	
	or		
	at night there i surroundings	s a greater temperature difference between people and	1

(so surroundings) emit less infrared (than in daytime) accept camera detects a greater contrast

or

gives larger difference in infrared emitted (between people and surroundings)

[10]

Μ8.		(a)	(kinetio	c) energy (of the particles) is reduced accept slow down accept transfer energy to (cold) glass / surface accept energy is lost do not accept vibrate less	1
		mov	ve close	er together	1
	(b)	dou	ıble glaz	zing provides (better) insulation accept double glazing has a lower U-value accept less energy / heat transfer through double glazing	1
		(ins	ide of) (glass is not as cold accept window stays warm(er)	1
	(c)	(i)	any o	one from:	
				to avoid bias	
				to make sure results are reproducible accept repeatable / reliable for reproducible	1
		(ii)	any ti	h ree from: accept Superglaze or G-type for 'better insulating glass' throughout	
				the lower the <u>U-value</u> , the better the insulator <i>'better insulating glass' has a lower U-value is insufficient</i>	
				better insulating glass costs more money	
				increasing the (width of) air gap increases cost	
				additional cost of better insulating glass offset by energy savings	3

M9.		accept atoms / particles for ions throughout					
	(a metal ł	nas) free <u>electrons</u>					
		accept mobile for free	1				
	(kinetic) e	energy of (free) electrons increases accept energy of ions increases accept ions vibrate with a bigger amplitude accept ions vibrate more do not accept electrons vibrate more	1				
	(free) <u>ele</u>	1					
	or electrons	move through metal					
		accept electrons collide with other electrons / ions					
	(so) elect	rons transfer energy to other electrons / ions accept ions transfer energy to neighbouring ions	1	[4]			
				[4]			
M10.	(a)	any two from:					
		(air) particles / molecules / atoms gain energy					
		(air) particles / molecules / atoms move faster do not accept move more do not accept move with a bigger amplitude / vibrate more					
		(air) particles / molecules / atoms move apart					
		air expands ignore particles expand					
		air becomes less dense ignore particles become less dense					
		warm / hot air / gases / particles rise do not accept heat rises					

answers in terms of heat particles negates any of the mark points that includes particles

	(b)	(i)	any two from		
			free / mobile electrons gain (kinetic) energy accept free / mobile electrons move faster accept vibrate faster for gain energy		
			free electrons collide with other (free) electrons / ions / atoms / particles		
			atoms / ions / particles collide with other atoms / ions / particles answers in terms of heat particles negates this mark point	2	
		(ii)	(faster) energy / heat transfer to room(s) / house accept room(s) / house gets warm(er) accept lounge / bedroom / loft for rooms	1	
				-	[5]
M11.		(a)	conduction		
				1	
	(b)	the	freezer		
			both parts needed		
		grea	ater <u>temperature</u> difference (between freezer and room) do not accept because it is the coldest	1	
	(c)	any	two from:		
			poor absorber of heat / radiation accept does not absorb heat poor emitter of heat / radiation is neutral		
			reflects heat / radiation (from room away from fridge-freezer)		
			reduces heat transfer into the fridge-freezer		
			reduces power consumption of fridge-freezer do not accept it is a bad conductor / good insulator	2	[4]

M12. (a)

) (i) £190

nb mention idea of cost per J in £ will come to an approx figure full credit given allow **1** mark for showing that the energy loss through the roof is $\frac{1}{4}$ of the total energy loss ie 150 / 600

(ii) £142.50

allow ecf 50 % of their (a)(i) ×1.5 ie their (a)(i) ×0.75

(b) transferred to surroundings / atmosphere

or becomes spread out

[4]

1