

## GCSE PHYSICS

Topic Paper: 4.4 & 8.1.2 Nuclear fission and fusion and The life cycle of a star (Physics only) Part 1 & 2 Mark Scheme

# MARK SCHEME



68 Marks

More resources available at www.kickstart-tutors.uk/resources

## **M1.** formed from dust or gas (unless in atmosphere) which is pulled together by gravitational forces high temperature inside

[2]

[8]

| M2. |     | (a)                                           | (i)                                                 | plutonium (239)<br>accept Pu / Thorium / MOX (mixed oxide) |                                        |                |                          |            |  |   |
|-----|-----|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------|--------------------------|------------|--|---|
|     |     |                                               |                                                     | do <b>not</b> acc                                          | ept uranium-238 <b>or</b> hydi         | rogen          |                          | 1          |  |   |
|     |     | (ii) (er                                      |                                                     | nergy) used to                                             | neat water and                         |                |                          | 1          |  |   |
|     |     |                                               | produce (high p                                     |                                                            | pressure) steam                        |                | 1                        |            |  |   |
|     |     |                                               |                                                     |                                                            | the                                    | e steam drives | a turbine (which turns a | generator) |  | 1 |
|     | (b) | Neutron(s) shown 'hitting' other U-235 nuclei |                                                     |                                                            |                                        |                |                          |            |  |   |
|     | ( ) | one uranium nucleus is sufficient             |                                                     |                                                            |                                        | 1              |                          |            |  |   |
|     |     | U-23                                          | 235 nuclei (splitting) producing 2 or more neutrons | 1                                                          |                                        |                |                          |            |  |   |
|     | (c) | an                                            | any <b>two</b> from:                                |                                                            |                                        |                |                          |            |  |   |
|     |     |                                               | ne                                                  | eutrons are ab                                             | orbed (by boron / contro               | ol rods)       |                          |            |  |   |
|     |     |                                               | th                                                  | ere are fewer                                              | neutrons                               |                |                          |            |  |   |
|     |     |                                               | ch                                                  | nain reaction s<br>accept few                              | ows down / stops<br>er reactions occur |                |                          | 2          |  |   |



M3. (a) (i) (large) <u>nucleus</u> hit by a neutron

splits into (smaller) nuclei **and** neutron(s) (+ energy)

 (ii) additional neutrons collide with nuclei causing further fission allow full credit for a correct labelled diagram accept 2 or more neutrons given out at each fission reaction diagram shows 3 discernible sizes, with smaller nuclei and neutrons at same stage



(b) cost of (building and) de-commissioning is very high **or** cost of building is high<u>er</u>

accept a correct description of de-commissioning accept high cost to keep the power station safe / secure accept high cost of reprocessing / storage of nuclear waste

(c) less pollution from transport carrying the fuel

accept coal produces more pollutant gases accept correct named gases accept more radiation pollution from coal than nuclear accept more waste from coal than nuclear do **not** accept any reference to burning uranium do **not** accept answers in terms of global warming **or** acid rain unless developed

[5]

1

1

1

1

1

| M4. | (a)          | it use E = mc <sup>2</sup>                                                                                                                                                               |   |     |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | mas          | ss in kg i.e. 0.001 × $\frac{0.7}{100}$                                                                                                                                                  |   |     |
|     |              | each gains 1 mark                                                                                                                                                                        |   |     |
|     | but          | : 000007                                                                                                                                                                                 |   |     |
|     |              | gains 2 marks                                                                                                                                                                            |   |     |
|     | 21           | ×10 <sup>3</sup>                                                                                                                                                                         |   |     |
|     | 2.1          | gains 3 marks                                                                                                                                                                            |   |     |
|     | evid         | dence of 0.000007                                                                                                                                                                        |   |     |
|     | ma           | ss in kg (i.e. 0.0007 <b>or</b> 0.7/100000)<br><i>each gains 1 mark</i>                                                                                                                  |   |     |
|     | squ<br>but   | aring the speed of light<br>6.3 ×10 <sup>11</sup> (credit alternative ways of stating this)<br>gains 3 marks                                                                             |   |     |
|     | unit         | ts J/joule<br>for 1 further mark                                                                                                                                                         |   |     |
|     | (N.I         | B credit kJ, MJ, GJ but check power of 10 for full credit)                                                                                                                               | 4 |     |
| (b) | (i)          | <i>idea that</i> the bigger the mass the shorter the life <i>gains 1 mark</i>                                                                                                            |   |     |
|     |              | <b>but</b> <i>idea that</i> decrease in life is much more than proportional to increase in mass                                                                                          |   |     |
|     |              | <b>or</b> more than proportional to mass <sup>2</sup>                                                                                                                                    |   |     |
|     |              | gains 2 marks                                                                                                                                                                            | 2 |     |
|     | <i>(</i> ii) | ideas that                                                                                                                                                                               |   |     |
|     | (")          | greater mass means greater <b>core</b> temperature/pressure<br>greater core temperature/pressure means greater rate of fusion<br>increase in mass produces a proportionally much greater |   |     |
|     |              | each for 1 mark                                                                                                                                                                          |   |     |
|     |              |                                                                                                                                                                                          | 3 | [9] |

#### M5. (a) any two from:

|     |      | nuclei / atoms of light elements fuse<br>accept hydrogen or helium for light elements<br>accept join for fuse<br>accept for <b>1</b> mark, by nuclear fusion<br>answers about fission negates a mark |   |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |      | each (fusion) reaction releases energy / heat / light                                                                                                                                                |   |
|     |      | lots of reactions occur                                                                                                                                                                              | 2 |
| (b) | pre  | sence of nuclei of the heaviest / heavy / heavier elements<br>accept atom for nuclei                                                                                                                 | 1 |
| (c) | (i)  | (matter / mass) with such a high density / strong gravitational (field)                                                                                                                              | 1 |
|     |      | electromagnetic radiation / light is pulled in<br>accept nothing can escape<br>do <b>not</b> accept answers in terms of an empty void                                                                | 1 |
|     | (ii) | X-rays<br>accept e-m radiation / e-m waves                                                                                                                                                           | 1 |

[6]

| M6. |     | (a)        | runs out of hydrogen (in its core)<br>accept nuclear fusion slows down<br>do <b>not</b> accept fuel for hydrogen<br>do <b>not</b> accept nuclear fusion stops<br>ignore reference to radiation pressure / unbalanced forces |   |  |  |  |
|-----|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|     |     |            | ignore reference to radiation pressure / andalancea forces                                                                                                                                                                  | 1 |  |  |  |
|     | (b) | ten<br>gia | iperature decreases / (relative)luminosity increases as it changes to a red<br>nt                                                                                                                                           |   |  |  |  |
|     |     | U          | if both temperature and luminosity are given both must be correct                                                                                                                                                           | 1 |  |  |  |
|     |     | ten<br>wh  | nperature increases / (relative) luminosity decreases as it changes to a<br>ite dwarf                                                                                                                                       |   |  |  |  |
|     |     |            | if both temperature and luminosity are given both must be correct                                                                                                                                                           | 1 |  |  |  |

correct change in temperature **and** (relative) luminosity as Sun changes to a red giant and then to a white dwarf

an answer changes to a red giant and then white dwarf with no mention or an incorrect mention of temperature or (relative) luminosity change gains **1** mark only if no other marks awarded ignore correct or incorrect stages given beyond white dwarf

[6]

1

1

1

| M7. |     | (a)   | (i) (          | nuclear) fission<br>accept fision providing clearly <b>not</b> f <u>u</u> sion                                                                        | 1 |
|-----|-----|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |     | (ii)  | (relea         | ised) neutrons are absorbed by further (uranium) <u>nuclei</u><br>accept hit <u>nuclei</u> for absorbed / hit<br>do <b>not</b> accept atom for nuclei | 1 |
|     |     |       | more           | neutrons are released (when new nuclei split)<br>accept for <b>both</b> marks a correctly drawn diagram                                               | 1 |
|     |     | (iii) | incre          | ases by 1                                                                                                                                             |   |
|     |     |       | <b>or</b> go   | es up to 236                                                                                                                                          | 1 |
|     | (b) | any   | <b>two</b> fro | om:                                                                                                                                                   |   |
|     |     |       | (more          | e) neutrons are absorbed<br>accept there are fewer neutrons                                                                                           |   |
|     |     |       | (chair         | n) reaction slows down / stops<br>accept keeping the (chain) reaction controlled                                                                      |   |
|     |     |       | less e         | energy released<br>accept heat for energy<br>accept gases (from reactor) are not as hot                                                               | 2 |
|     |     |       |                |                                                                                                                                                       |   |
|     |     |       |                |                                                                                                                                                       |   |

- M8.
- (a) (i) the bigger the <u>masses</u> (of the dust and gases then) the bigger the force / gravity (between them) accept the converse
  - the greater the distance (between the dust and gases then) the smaller the force / gravity (between them) accept the converse

(b) radiation 'pressure' and gravity / gravitational attraction these are balanced / in equilibrium 1 must be in correct context do not accept are equal or there is sufficient / a lot of hydrogen / fuel to last a very long time second mark consequent on first 1 (c) any two from: hydrogen runs out / is used up nuclei larger than helium nuclei formed accept bigger atoms are formed however do **not** accept any specific mention of an atom with a mass greater than that of iron (star expands to) / become(s) a red giant 2 [6] M9. gravitational attraction (a) accept 'gravity' accept (nuclear) fusion 1 radiation 'pressure' and gravity / gravitational attraction (b) must be in correct context 1 are balanced / in equilibrium accept are equal and opposite do not accept 'equal' or there is sufficient / a lot of hydrogen / fuel do not accept constant supply of hydrogen to last a very long time / for (nuclear) fusion this mark only scores if linked to the supply of hydrogen / fuel reference to burning negates both marks 1 (conversion of) hydrogen to helium (c) (i) accept (conversion of) lighter elements to heavier elements 1 by (nuclear) fusion note do **not** credit spelling of 'fusion' which could be 'fission' reference to burning negates both marks 1

|      |     | (ii)  | massive supply / lots of hydrogen                                                                                                                                                                                                                                                                               |   |     |
|------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|      |     | (")   | massive supply note of <u>injuriogen</u>                                                                                                                                                                                                                                                                        | 1 |     |
|      | (d) | distr | ibuted throughout the Universe / space<br>do <b>not</b> accept Solar System for Universe                                                                                                                                                                                                                        | 1 | [7] |
|      |     |       |                                                                                                                                                                                                                                                                                                                 |   |     |
| M10. |     | (a)   | (forces due to) gravity and radiation pressure                                                                                                                                                                                                                                                                  | 1 |     |
|      |     | corre | ect direction of forces                                                                                                                                                                                                                                                                                         | 1 |     |
|      |     | (forc | es) are balanced / equilibrium / equal<br>accept for <b>3</b> marks an answer in terms of<br>sufficient hydrogen (1)<br>to keep fusion reaction (1)<br>reference to burn / burning negates this mark<br>going at a continuous /steady rate (1)<br>if fuel is used instead of hydrogen maximum of <b>2</b> marks | 1 |     |
|      | (b) | the S | Sun will remain stable (for several billion years)                                                                                                                                                                                                                                                              | 1 |     |
|      |     | base  | ed on evidence                                                                                                                                                                                                                                                                                                  |   |     |
|      |     |       | accept a specific example of evidence                                                                                                                                                                                                                                                                           |   |     |
|      |     |       | eg that the Sun has remained stable during the life of our planet / for 4.5 billion years                                                                                                                                                                                                                       |   |     |
|      |     |       | <b>or</b><br>still contains more than 50 % hydrogen<br><b>or</b>                                                                                                                                                                                                                                                |   |     |
|      |     |       | by comparison with the lifecycle of (similar) stars allow a refutation                                                                                                                                                                                                                                          |   |     |
|      |     |       | eg not based on prejudice / whim / hearsay / folk law / historical or<br>religious authority                                                                                                                                                                                                                    | 1 |     |
|      |     |       |                                                                                                                                                                                                                                                                                                                 | - | [5] |
|      |     |       |                                                                                                                                                                                                                                                                                                                 |   |     |

M11. (a) fusion

do not credit any response which looks like 'fission'

of hydrogen / H (atoms)

credit only if 1<sup>st</sup> mark point scores

1

1

k

|      | (b) | fusion of other / lighter atoms / elements<br>reference to big bang nullifies both marks                                                                                                                                              |   | 1 |     |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|
|      |     | during supernova / explosion of star(s)                                                                                                                                                                                               |   | 1 |     |
|      | (c) | the (available) evidence: supports this idea<br>or<br>does not contradict this idea<br>or<br>can be extrapolated to this idea<br>or<br>(electromagnetic) spectrum from other stars is similar to sun                                  |   | 1 | [5] |
| M12. |     | <ul> <li>(a) a protostar is at a lower temperature</li> <li>or</li> <li>a protostar does not emit radiation /energy</li> </ul>                                                                                                        | 1 |   |     |
|      |     | as (nuclear) fusion reactions have not started<br>accept heat or light for energy                                                                                                                                                     | 1 |   |     |
|      | (b) | by (nuclear) fusion<br>accept nuclei fuse (together)<br>nuclear fusion and fission negates this mark                                                                                                                                  | 1 |   |     |
|      |     | of hydrogen to helium                                                                                                                                                                                                                 | 1 |   |     |
|      |     | elements heavier than <u>iron</u> are formed in a <u>supernova</u><br>accept a specific example e.g. heavier elements such as gold are<br>formed in a supernova<br>accept heavier elements (up to iron) formed in red giant/red super |   |   |     |
|      |     | giant reference to burning (hydrogen) negates the first 2 marks                                                                                                                                                                       | 1 |   | [5] |